Главная  Журналы 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 [ 75 ] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116


Устройство магнитофона (ГС, ГЗ, ГВ-головки стирания, записи и воспроизведения)


Магнитный поток головки



вьшуску новых сортов пленки и разработке более совершенных головок появилось новое значение скорости: 9,5 см/с. Вспоминается, с каким восхищением в свое время говорили о том, что на этой скорости удалось записать полосу частот 12, 14 и, наконец, 18 кГц.

Все это относится к катушечным магнитофонам. В них использовалась стандартная лента шириной 6,25 мм. Ну а толщина ленты была предметом многих и многих забот технологов. Ведь чем тоньше лента, тем больше ее войдет на стандартную катушку, тем больше будет время записи. К тому же тонкая лента мягче и лучше прилегает к рабочему зазору головки. Это-с одной стороны, а с другой, лента должна быть прочной и не растягиваться в лентопротяжном механизме. Чтобы хорошо прижать ленту к головке, ее надо сильно натянуть. Эти факторы ограничивают минимальную толщину ленты. Раньше выпускались ленты на ацетатной основе толщиной 37 и 55 мкм. Современные ленты на лавсановой основе значительно тоньше: 18... 27 мкм.

Подлинную революцию в магнитной записи звука произвели кассеты. Согласитесь, что не совсем удобно каждый раз закреплять конец ленты на катушке и закладывать ленту в прорезь корпуса лентопротяжного механизма. Кассета сразу решила все эти проблемы. В кассетах используют еще более тонкие и узкие ленты, намотанные на две бобышки, постоянно расположенные в кассете. Кассетные магнитофоны стали легче, удобнее, появились портативные модели с батарейным питанием. Часто попадаются в скверах, на улицах, в аудиториях институтов, техникумов и в метро молодые люди с карманным магнитофоном-проигрывателем (плейером) и легкими стереонаушниками. Надо ли говорить, что такой молодой человек плохо воспринимает внешний мир, оглушенный стереому-зыкой (часто довольно низкопробной), он является вероятным кандидатом в жертвы дорожно-транспортных происшествий, а уж в аудиториях проводит время совершенно зря.

Но довольно о печальных последствиях усовершенствованной технологии, породившей «магнитофонный бум». Обратимся к физическим основам магнитной записи. Почему, собственно, на пленке остается записанный звуковой сигнал? Почему он не исчезает, как только перестает действовать магнитное поле головки? Таково свойство ферромагнетиков-веществ с очень высокой магнитной проницаемостью. Что это такое?- Коэффициент, показывающий, во сколько раз увеличивается магнитная индукция в веществе по равнению с пустым пространством. Магнитное поле создается электрическим током. Магнитные силовые линии, проведенные в заправлении вектора магнитной индукции в, по форме представ-1ЯЮТ собой кольца, нанизанные на провод с током. Если провод •вернуть в кольцо, магнитная индукция возрастет. Сделаем кольцо 13 нескольких витков и таким образом заставим ток несколько раз )бегать наше кольцо. Во столько же раз возрастет и магнитная пщукция. У нас получилась катушка индуктивности, создающая лагнитное поле при пропускании через нее тока. Введем в катушку йрдечник из железа, феррита или другого ферромагнетика. Магнит-юе поле возрастет. Но почему, ведь ток-то мы не увеличивали?! Эказывается, в железе, как и в любом ферромагнетике, есть свои рошечные, как говорят, элементарные магнитики. Простейший 1том с одним электроном, вращающийся со скоростью v вокруг ира, уже является элементарным магнитом, ведь движущийся аряд-электрон-это кольцевой ток, создающий свое собственное larhhthoe поле. Кроме того, электрон обладает еще и собственным 1агнитным моментом, обусловленным, как можно себе предста-



вить, быстрым вращением электрона вокруг собственной оси-его спином. Отдельно взятые магнитные поля ато.мов очень слабы. Но когда вещество ферромагнетика кристаллизуется из расплава, электроны ориентируются своими магнитными полями в одну сторону. Образуется микрокристаллик - домен,-в котором все элементарные магнитные поля складываются и образуют уже значительное магнитное поле домена. Но если кусок ферромагнетика не намагничен, то магнитные поля доменов ориентированы как попало, хаотически, и общее магнитное поле в веществе отсутствует. Картина сразу меняется, если ферромагнетик поместить во внешнее магнитное поле (в катушку индуктивности). Внешнее поле заставляет магнитные поля доменов поворачиваться, ориентироваться в одном направлении. Теперь к внешнему полю добавляются собственные поля доменов, и общее магнитное поле возрастает.

Относительная магнитная проницаемость ферромагнетиков очень велика: она может достигать нескольких тысяч и даже десятков тысяч. Во столько же раз возрастает и магнитное поле в сердечнике. Вот какой огромный эффект создают крошечные элементарные магнитики-домены! Поэтому все катушки в электротехнических устройствах-трансформаторах, двигателях, электромагнитах и в той же головке магнитофона-обязательно наматывают на ферромагнитньк сердечниках. Без магнитопровода потребовалось бы гораздо больше витков, а в ряде случаев устройство и вообще нельзя было бы изготовить.

А зависят ли магнитные свойства ферромагнетика от величины приложенного магнитного поля? Оказывается, зависят, и очень сильно. Эту зависимость лучше всего изобразить графически. Отметим по горизонтали напряженность внешнего магнитного поля Н. Она пропорциональна силе тока в катушке. А по вертикали отложим магнитную индукцию в магнитопроводе В. На начальном участке кривой при малом токе в катушке индукция возрастает не очень быстро. Домены поворачиваются в направлении поля как бы нехотя. Затем магнитная индукция возрастает быстрее. В этой части кривая намагничивания идет круто вверх. Наконец, все домены поворачиваются по полю и индукция перестает расти. Кривая намагничивания теперь идет почти горизонтально, и магнитная проницаемость резко падает. Это явление называется насьпцением, а предельная величина индукции в магнитопроводе-индукцией насьпцения То, что у нас получилось, называется основной кривой намагничивания.

Еще более интересные явления произойдут, если мы доведем ферромагнетик до насыщения и будем уменьшать внешнее поле. В этом случае разные ферромагнетики ведут себя по-разному. У магнитомягких материалов, к которым относится, например, железо, индукция будет уменьшаться и исчезнет вместе с внешним полем. Из магнитомягких материалов делают сердечники электромагнитов, используемых, например в реле. Пока в обмотке течет ток, магнитопровод намагничен и притягивает магнитные предметы. Но стоит ток выключить, как все магнитные свойства сердечника исчезают, и он остается таким же простым куском железа, каким и был раньше. Иначе обстоят дела у магнитотвердых материалов. Ток в катушке можно уменьшить до нуля, но намагниченность магнитопровода не исчезает! Он продолжает притягивать ферромагнитные предметы. Собственно, именно так и изготавливают постоянные магниты в форме подковы, бруска или магнитной стрелки компаса. На нашей кривой линия раздваивается: при увеличении напряженности магнитного поля мы движемся по уже знакомой кривой





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 [ 75 ] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116