Главная  Журналы 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 [ 65 ] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

центры должны работать на разных каналах, иначе на границе областей обслуживания возможны сильные взаимные помехи. Например, если Москва ведет телевизионное вещание в канале I, то ни в Калинине, ни в Рязани, ни в любых других окрестных городах этот канал использовать нельзя, иначе слабый сигнал, приходящий из Москвы, будет создавать помеху. С высокой Останкинской башни телевизионный сигнал может распространятся при благоприятных условиях на расстояние до 300 км.

Выделили еще семь каналов в диапазоне частот 174... 230 МГц (1,7... 1,3 м). К настоящему времени и этого оказалось недостаточно, и к 12 каналам на метровых волнах добавили еще два десятка каналов на ДМВ в диапазоне 470...630 МГц (64...47 см). Чем выше частота канала, тем легче передать телевизионный сигнал с широкой полосой. Выше мы определили, что для передачи изображения, содержащего 625 строк и полмиллиона элементов изображения в кадре, нужен спектр частот шириной 6,5 МГц. Но при амплитудной модуляции несущей образуются две боковые полосы в ширина излучаемого спектра может достигнуть 13 МГц. Это слишком много, и специалисты сразу применили очень прогрессивный способ модуляции с подавлением одной боковой полосы. Правда, несущая не подавляется, а для детектирования в приемнике служит не синхронный, а самый обычный диодный детектор, как его чаете называют,-детектор огибающей. Более того, для уменьшения искажений при детектировании нижняя боковая полоса частот подавляется не полностью, а оставляется ее часть шириной 1,25 МГц непосредственно примыкающая к несущей.

Посмотрите на изображение спектра излучаемого телевизионного сигнала-там все это показано. На 6,5 МГц выше несуще? сигнала изображения расположена несущая звукового передатчика Звуковое сопровождение передается с частотной модуляцией прр девиации + 50 кГц. Полная ширина радиочастотного спектра телевизионного сигнала получается около 8 МГц.

При передаче столь широкого спектра на метровых волнах мь получаем относительную ширину спектра около 10%, а на частота? первых телевизионных каналов-даже больше. Это создает опреде ленные трудности в проектировании и передатчиков, и антенн, i приемников: все эти устройства должны быть широкополосными Любая неравномерность в передаче телевизионного спектра приво дит к ухудшению качества и четкости изображения. На ДМ! относительная ширина полосы частот намного уже и пропустить е«


Спектр видеосигнала




Передатчик изображения

без ослаблений легче. Поэтому и качество телевизионного вещания на ДМВ обычно выше.

Структурная схема телевизионного передатчика несложна. Несущая генерируется высокостабильнъгм задающим генератором. В модуляторе амплитуда несущей изменяется в такт с видеосигналом, поступающим от телекамеры. Ну а перед антенной установлен усилитель мощности, увеличивающий мощность телевизионного сигнала до нескольких десятков, а иногда и сотен киловатт. Впрочем, ввиду ограниченного радиуса действия УКВ передатчиков особенно большие мощности не нужны. Канал звукового сопровождения представляет собой отдельный передатчик меньшей мощности. Лишь в некоторых случаях используют общий усилитель мощности звукового и видеосигналов, который в этом случае должен иметь особенно высокую линейность. Линейность усилителя-это прямо пропорциональная зависимость между амплитудами входного и выходного сигналов. Любая нелинейность приводит к тому, что в спектре выходного сигнала появляются побочные продукты-сигналы с частотами, которых во входном спектре не было. Так, например, если во входном спектре присутствовали две частоты-/ и , то в выходном спектре появятся еще и частоты Vi-f2 и 2/2-/1. Это расширит спектр излучения, создаст помехи и ухудшит качество сигнала.

Еще несколько слов о передатчике звукового сопровождения. Частота его задающего генератора слегка изменяется под действием звукового сигнала. На структурной схеме нарисованы несколько умножителей частоты. Зачем они? Вот зачем. Гораздо удобнее выполнить задающий генератор на сравнительно низкую частоту-в несколько раз ниже излучаемой. Генератор будет работать стабильнее, и не будут влиять наводки мощного сигнала со стороны выходного каскада. Более того, при умножении частоты возрастает и девиация частоты, вызываемая звуковым модулирующим сигналом. Поясним сказанное примером. Звуковое сопровождение первого телевизионного канала передается на частоте 56,25 МГц. Сконструируем задающий генератор на частоту 6,25 МГц и промодули-




генеРАТор

Передатчик звука


руем его звуковым сигналом с девиацией всего + 5,55 кГц. Затем включим последовательно два утроителя частоты, чтобы получить общий коэффициент умножения в девять раз. В результате на выходной каскад поступит ЧМ сигнал с требуемыми центральной частотой 56,25 МГц и девиацией + 50 кГц.

Как умножают частоту? Давайте уж не будем подробно разбираться в технических деталях, установим только общий принцип. Если форму синусоидального сигнала сильно исказить, то кроме основной частоты fg он будет содержать массу гармоник, т.е. колебания с частотами Iff,, ЗУо, 4/о и т. д. Остается выделить нужную гармонику колебательным контуром. А уж исказить форму колебаний очень просто (ломать-не делать!): достаточно выбрать режим обычного усилительного каскада на нелинейной части его характеристики. Если, например, увеличить напряжение смещения, то каскад будет работать «с отсечкой», т.е. усиливать только во время части периода входного сигнала. А остроконечные импульсы тока, протекающего в нагрузке, очень богаты гармониками. Вот вам еще несколько преимуществ частотной модуляции: модулировать сигнал можно в маломощном задающем генераторе, а нелинейные искажения, вносимые последующими каскадами, на качество сигнала не влияют.

Особо хотелось рассказать об антеннах передающих телецентров. Зачем строят высокие башни, вроде Останкинской в Москве? Вы уже знаете, что ультракороткие волны распространяются прямолинейно и с высокой башни «дальше видно»-расширяется радиус уверенного приема данного телецентра. Но даже с высокой башни нет никакого смысла излучать сигнал во все стороны. Разумеется, я не имею в виду, что надо излучать на север и не излучать на юг. Совсем нет! В горизонтальной плоскости надо излучать равномерно по всем направлениям. А вот вверх излучать сигнал незачем. И вниз, в землю, тоже. Основную часть мощности сигнала надо посьшать вдоль горизонта, где и расположена основная масса, если не сказать, все телезрители со своими приемными антеннами.

Сформировать узкую диаграмму направленности передающей антенны в направлении горизонта можно. Для этого надо расположить по вертикали одну над другой несколько всенаправленных антенн. Питать антенны следует от общего передатчика через фидеры равной длины. При этом все антенны будут возбуждаться в одной и той же фазе. Посмотрим, как формируется диаграмма направленности.





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 [ 65 ] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116