Главная  Журналы 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [ 37 ] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

скольку почти все электроны как бы привязаны к своим атомам. Правда, при сильном нагреве тепловое движение становится интенсивнее и некоторые из электронов отрываются от своих атомов, становясь свободными. Проводимость вещества при этом увеличивается. Вот почему полупроводниковые приборы очень боятся перегрева-проводимость может возрасти настолько, что ток в полупроводнике резко увеличится и наступит так называемый тепловой пробой. Чтобы не утомить вас, приведу лишь несколько цифр. Удельное сопротивление вещества-величина, обратная проводимости,-измеряется в омах на метр (Ом-м). Это сопротивление бруска вещества сечением 1 м и длиной 1 м. Вот это брусочек! Но что поделаешь, в международной системе единиц СИ единицей длины служит метр. Ну так вот: сопротивление медного бруска составляет всего 0,017-10* Ом. А сопротивление бруска тех же размеров, изготовленного из такого типичного диэлектрика, как стекло, равно 5-10Ом, т.е. на двадцать один порядок (10) больше! Удельное сопротивление полупроводников находится где-то между этими крайними значениями. Дать конкретные величины трудно, они зависят от вида вещества, его чистоты и многих других факторов.

JST"


Образование примесной дырочной проводимости



Чем чшце полупроводник, тем ближе его свойства к свойствам диэлектрика. Но если в полупроводник введена примесь, то проводимость резко возрастает. Различают два вида примесей: акцепторные и донорные. Валентность вещества акцепторной примеси меньше, чем валентность самого полупроводника. Это значит, что во внешнем электронном слое атомов примеси меньше электронов, чем у атомов полупроводника. В этом случае примесь по отношению к электронам атомов полупроводника ведет себя как агрессор: она захватывает их. В результате в кристаллической решетке вещества появляются атомы, которым не хватает одного электрона. Заряд этих атомов положителен. Они притягивают отрицательно заряженные электроны, и при первой же возможности атом, у которого не хватает электрона, захватывает его у соседнего атома. Положительный заряд при этом перемещается к соседнему атому. Тот, в свою очередь, захватывает электрон у соседа. Таким образом, положительный заряд перемещается еще дальше. Теперь оказалось, что в толще полупроводника с акцепторной примесью «гуляет сам по себе» положительный заряд, обусловленный нехваткой одного электрона. Заряд этот очень образно называют «дыркой».

Иное дело, если в полупроводник введена донорная примесь.


Образование примесной электронной проводимости I



Валентность вещества примеси на единицу больше валентности самого полупроводника. Это значит, что во внешней электронной оболочке атомов вещества примеси на один электрон больше, чем у атомов полупроводника. Объединяясь в кристаллы, атомы примеси используют для валентных связей все внешние электроны, кроме одного. В образовавшемся кристалле «лишние» электроны атомов примеси оказываются без работы. «Безработные» электроны свободно перемещаются по всему кристаллу, но все рабочие места-валентные связи- заняты. Эти электроны легко устремляются по направлению даже слабого электрического поля, создавая электрический ток.

Таким образом, вводя различные примеси, мы можем получить полупроводник с дырочной проводимостью (р-типа) и с электронной проводимостью (и-типа). Сами названия рил произошли от начальных букв английских слов positive и negative, обозначающих знак свободных зарядов (положительный или отрицательный). Чем выше концентрация примеси в полупроводнике, тем выше и его проводимость. Как только физики и инженеры научились получать полупроводники с различными типами проводимости, тут же появились и приборы, выполненные на их основе.

Что легче выпрямить: гвоздь или переменный ток?

Справедливости ради надо заметить, что за прошедшие несколько сотен лет технология выпрямления гвоздей заметно не изменилась. Этого совсем нельзя сказать о технологии выпрямления переменного тока. Прежде всего: а зачем его выпрямлять? Преимущества переменного тока очевидны: при передаче на большие расстояния напряжение можно повысить с помощью трансформатора. Ток в линии передачи при этом во столько же раз уменьшится, ведь одна и та же передаваемая мощность равна произведению тока и напряжения: р = iu. Значит, для передачи высокого напряжения подойдут провода меньшего сечения, уменьшатся их нагрев и потери мощности при передаче. Теперь в силовых сетях используют только переменный ток. Но во многих случаях необходим постоянный ток. Он нужен для питания электронных устройств, зарядки аккумуляторов. Тяговые двигатели постоянного тока имеют значительно лучшие характеристики. Поэтому поезда метро, трамваи и троллейбусы работают на постоянном токе. Лишь в последние годы электровозы на железных дорогах стали переводить на переменный ток, но электродвигатели на них по-прежнему работают на постоянном токе. Значит, промьилленности и транспорту необходимы устройства, превращающие переменный ток в постоянный.

В технике часто используют принципы, уже известные, вьщвину-тые давным-давно или подсказанные самой природой. В рассматриваемом случае подходят два принципа: мьипеловки и горки. Обобщенный принцип мышеловки заключается в следующем: некоторая дверца открывается легко, если двигаться с одной стороны, и не открывается-если двигаться с другой. Этот принцип используется в любом клапане, например в клапане насоса для накачивания волейбольного мяча.

Электронная лампа-тоже клапан. Выпрямить переменный ток может самая простая двухэлектродная лампа-диод,-содержащая анод и катод. Носители заряда-электроны излучаются накаленным катодом и двигаются к аноду только тогда, когда он заряжен





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [ 37 ] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116